SURF-based species identification system
نویسندگان
چکیده
The development of tools for the automated identification of species will reduce the burden of routine identifications conducted by many biologists. The design of these tools is difficult because it depends on the proper extraction of those most relevant characteristics of the image, namely, those unequivocally identify its species. The appropriate software for such extraction does not exist in all cases. This work proposes an architecture for the automated identification of the skulls of different mammalian species belonging to the order Eulipotyphla, which includes shrews, moles and hedgehogs, among others. Our system determines nine species of this mammalian group using existing object recognition techniques, identifying them based on a set of images of the skulls of these species in a digital image database. To validate the proposed architecture, mobile and web applications have been developed. These applications use the image recognition technology provided by the OpenCV library for the detection of the keypoints and matching of the images. The application extracts the descriptor of the input image using the Speed Up Robust Features (SURF) method and compares this descriptor against the image database for matching using a Euclidean distance based on the nearest-neighbor approach. The initial tests have achieved a reliability of 98%.
منابع مشابه
Offline Language-free Writer Identification based on Speeded-up Robust Features
This article proposes offline language-free writer identification based on speeded-up robust features (SURF), goes through training, enrollment, and identification stages. In all stages, an isotropic Box filter is first used to segment the handwritten text image into word regions (WRs). Then, the SURF descriptors (SUDs) of word region and the corresponding scales and orientations (SOs) are extr...
متن کاملAutomatic Cattle Identification based on Muzzle Photo Using Speed-Up Robust Features Approach
Cattle identification has been a serious problem for breeding association. The need of a robust identification method is a must. The previous identification means have not been satisfactory. The biometric marking has been investigated to be a permanent marking of the individual. Muzzle pattern or nose print has the same characteristic with the human fingerprint which is the most popular biometr...
متن کاملContent-Based Image Retrieval with LIRe and SURF on a Smartphone-Based Product Image Database
We present the evaluation of a product identification task using the LIRe system and SURF (Speeded-Up Robust Features) for content-based image retrieval (CBIR). The evaluation is performed on the Fribourg Product Image Database (FPID) that contains more than 3’000 pictures of consumer products taken using mobile phone cameras in realistic conditions. Using the evaluation protocol proposed with ...
متن کاملAn Efficient Finger-Knuckle-Print Based Recognition System Fusing SIFT and SURF Matching Scores
This paper presents a novel combination of local-local information for an efficient finger-knuckle-print (FKP) based recognition system which is robust to scale and rotation. The non-uniform brightness of the FKP due to relatively curvature surface is corrected and texture is enhanced. The local features of the enhanced FKP are extracted using the scale invariant feature transform (SIFT) and th...
متن کاملSurf Based Large Scale Image Retrieval
Image matching is the primary and important process which is mainly used in target tracking, space exploration, 3D reconstruction, modification identification. The existing system is utilizes the Scale Invariant Feature Transform (SIFT) is used to identifying corresponding points becomes difficult in the case of changing illumination or two surfaces with a similar intensity. Image retrieval ref...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016